2. University of Calgary

Universities for Astronomy

Universities / November 12, 2013

PH304 - Introduction to Astronomy and Special Relativity 15

Introduction to Special Relativity and Cosmology

The distance scale; Redshif;, Hubble constant; Feynmann light clock and time dilation; Lorentz constraction and simultaneity derived with light ray signals; Lerentz transformation and invariant interval; Light cones; Special relativistic paradoxes; Cosmological principle; Space expansion and concept of critical density, closed, open and flat universe; The problem of missing matter.

Introduction to, Planetary and Space Science

Solar system; Theory of orbital dynamics; Kepler’s Laws; Earth-moon system; Tidal force and the consequent phenomena; Rocket equation; Basic components of spacecraft.

Introduction to Astronomy

Astronomical coordinate systems; Positions and motions of stars; Stellar luminosity and magnitudes; Magnitude systems and the color of stars; Lluminosity; Stellar temperatures; luminosity and radi;. Stellar spectral classification; Line strength and formation. Hertzsprung-Russell diagram, mass-Luminosity relation.

Introduction to Particle Physics

Discovery of elementary particles. The concept of four different forces and fields in classical and quantum physics; Introduction to virtual particles and discovery of different particles for different type of interaction forces; Standard model of particles.

Introduction to Space Science

Rocket equation. Basic components of spacecraft.

Read more
PH321 - Mechanics

Measurement and motion; Dimensional analysis, Motion in one dimension: velocity, acceleration, motion with constant acceleration, Motion in a plane with constant acceleration, projectile motion, uniform circular motion, and Newton's laws of motion.

Work, Energy and Momentum; Work, kinetic energy, power, potential energy, relation between force and potential energy, conservation of energy, application to gravitation and simple pendulum, momentum, conservation of linear momentum, elastic and inelastic collisions.

Rotational Motion; Rotational motion: angular velocity, angular acceleration, rotation with constant angular acceleration, rotational kinetic energy, moment of inertia, calculation of moment of inertia of a rod, disc or plate, torque, angular momentum, relation between torque and angular momentum, conservation of angular momentum.

Concept of field; 1/r2 fields; Gravitational Field; Kepler's Laws, Newton's law of gravitation, Gravitational potential, the gravitational field of a spherical shell by integration.

Oscillations and Mechanical Waves; Vibrations of an elastic spring, simple harmonic motion, energy in SHM, simple pendulum, physical pendulum, damped and driven oscillations, resonance, mechanical waves, periodic waves, their mathematical representation using wave vectors and wave functions, derivation of a wave equation, transverse and longitudinal waves, elastic waves on a string, principle of superposition, interference and formation...

Source: www.kent.ac.uk